Source code for deepke.attribution_extraction.standard.models.GCN

import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
import torch
import torch.nn as nn
from . import BasicModule
from module import Embedding
from module import GCN as GCNBlock

from utils import seq_len_to_mask


[docs]class GCN(BasicModule): def __init__(self, cfg): super(GCN, self).__init__() if cfg.dim_strategy == 'cat': cfg.input_size = cfg.word_dim + 2 * cfg.pos_dim else: cfg.input_size = cfg.word_dim self.embedding = Embedding(cfg) self.gcn = GCNBlock(cfg) self.fc = nn.Linear(cfg.hidden_size, cfg.num_attributes)
[docs] def forward(self, x): word, lens, entity_pos, attribute_value_pos, adj = x['word'], x['lens'], x['entity_pos'], x['attribute_value_pos'], x['adj'] inputs = self.embedding(word, entity_pos, attribute_value_pos) output = self.gcn(inputs, adj) output = output.max(dim=1)[0] output = self.fc(output) return output