Source code for deepke.attribution_extraction.standard.module.RNN

import torch
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence


[docs]class RNN(nn.Module): def __init__(self, config): """ type_rnn: RNN, GRU, LSTM 可选 """ super(RNN, self).__init__() # self.xxx = config.xxx self.input_size = config.input_size self.hidden_size = config.hidden_size // 2 if config.bidirectional else config.hidden_size self.num_layers = config.num_layers self.dropout = config.dropout self.bidirectional = config.bidirectional self.last_layer_hn = config.last_layer_hn self.type_rnn = config.type_rnn rnn = eval(f'nn.{self.type_rnn}') self.rnn = rnn(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers, dropout=self.dropout, bidirectional=self.bidirectional, bias=True, batch_first=True)
[docs] def forward(self, x, x_len): """ Args: torch.Tensor [batch_size, seq_max_length, input_size], [B, L, H_in] 一般是经过embedding后的值 x_len: torch.Tensor [L] 已经排好序的句长值 Returns: output: torch.Tensor [B, L, H_out] 序列标注的使用结果 hn: torch.Tensor [B, N, H_out] / [B, H_out] 分类的结果,当 last_layer_hn 时只有最后一层结果 """ B, L, _ = x.size() H, N = self.hidden_size, self.num_layers x_len = x_len.cpu() x = pack_padded_sequence(x, x_len, batch_first=True, enforce_sorted=True) output, hn = self.rnn(x) output, _ = pad_packed_sequence(output, batch_first=True, total_length=L) if self.type_rnn == 'LSTM': hn = hn[0] if self.bidirectional: hn = hn.view(N, 2, B, H).transpose(1, 2).contiguous().view(N, B, 2 * H).transpose(0, 1) else: hn = hn.transpose(0, 1) if self.last_layer_hn: hn = hn[:, -1, :] return output, hn