import torch
import numpy as np
from abc import ABCMeta, abstractmethod
from sklearn.metrics import precision_recall_fscore_support
[docs]class Metric(metaclass=ABCMeta):
@abstractmethod
def __init__(self):
pass
[docs] @abstractmethod
def reset(self):
"""
Resets the metric to to it's initial state.
This is called at the start of each epoch.
"""
pass
[docs] @abstractmethod
def update(self, *args):
"""
Updates the metric's state using the passed batch output.
This is called once for each batch.
"""
pass
[docs] @abstractmethod
def compute(self):
"""
Computes the metric based on it's accumulated state.
This is called at the end of each epoch.
:return: the actual quantity of interest
"""
pass
[docs]class PRMetric():
def __init__(self):
"""
暂时调用 sklearn 的方法
"""
self.y_true = np.empty(0)
self.y_pred = np.empty(0)
[docs] def reset(self):
"""
重置为0
"""
self.y_true = np.empty(0)
self.y_pred = np.empty(0)
[docs] def update(self, y_true: torch.Tensor, y_pred: torch.Tensor):
"""
更新tensor,保留值,取消原有梯度
"""
y_true = y_true.cpu().detach().numpy()
y_pred = y_pred.cpu().detach().numpy()
y_pred = np.argmax(y_pred, axis=-1)
self.y_true = np.append(self.y_true, y_true)
self.y_pred = np.append(self.y_pred, y_pred)
[docs] def compute(self):
"""
计算acc,p,r,f1并返回
"""
p, r, f1, _ = precision_recall_fscore_support(self.y_true, self.y_pred, average='macro', warn_for=tuple())
_, _, acc, _ = precision_recall_fscore_support(self.y_true, self.y_pred, average='micro', warn_for=tuple())
return acc, p, r, f1