Source code for deepke.name_entity_re.multimodal.models.clip.modeling_clip

# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CLIP model. """


from typing import Any, Optional, Tuple

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.activations import ACT2FN
from transformers.file_utils import (
    ModelOutput,
    add_start_docstrings,
    replace_return_docstrings,
)
from transformers.file_utils import ModelOutput
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig

logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"

CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "openai/clip-vit-base-patch32",
    # See all CLIP models at https://huggingface.co/models?filter=clip
]


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)


# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
[docs]def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
[docs]def clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.T) return (caption_loss + image_loss) / 2.0
[docs]class CLIPBaseModelOutput(ModelOutput): last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None qks: Optional[Tuple[torch.FloatTensor]] = None
[docs]class CLIPBaseModelOutputWithPooling(ModelOutput): last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None qks: Optional[Tuple[torch.FloatTensor]] = None
[docs]class CLIPOutput(ModelOutput): """ Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`return_loss` is :obj:`True`): Contrastive loss for image-text similarity. logits_per_image:(:obj:`torch.FloatTensor` of shape :obj:`(image_batch_size, text_batch_size)`): The scaled dot product scores between :obj:`image_embeds` and :obj:`text_embeds`. This represents the image-text similarity scores. logits_per_text:(:obj:`torch.FloatTensor` of shape :obj:`(text_batch_size, image_batch_size)`): The scaled dot product scores between :obj:`text_embeds` and :obj:`image_embeds`. This represents the text-image similarity scores. text_embeds(:obj:`torch.FloatTensor` of shape :obj:`(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of :class:`~transformers.CLIPTextModel`. image_embeds(:obj:`torch.FloatTensor` of shape :obj:`(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of :class:`~transformers.CLIPVisionModel`. text_model_output(:obj:`BaseModelOutputWithPooling`): The output of the :class:`~transformers.CLIPTextModel`. vision_model_output(:obj:`BaseModelOutputWithPooling`): The output of the :class:`~transformers.CLIPVisionModel`. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None
[docs] def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() )
[docs]class CLIPVisionEmbeddings(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1))) self.aux_position_embedding = nn.Embedding(48, self.embed_dim) self.register_buffer("aux_position_ids", torch.arange(48).expand((1, -1))) self.rcnn_position_embedding = nn.Embedding(12, self.embed_dim) self.register_buffer("rcnn_position_ids", torch.arange(12).expand((1, -1)))
[docs] def forward(self, pixel_values, aux_embeddings=None, rcnn_embeddings=None): batch_size = pixel_values.shape[0] class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = class_embeds if aux_embeddings is not None: aux_embeds = [] for aux_embedding in aux_embeddings: aux_embed = self.patch_embedding(aux_embedding) aux_embed = aux_embed.flatten(2).transpose(1, 2).flatten(0, 1) # 3*16, 768 3个子图 aux_embeds.append(aux_embed) aux_embeds = torch.stack(aux_embeds) # bsz, 48, 768 aux_embeds = aux_embeds + self.aux_position_embedding(self.aux_position_ids) embeddings = torch.cat((embeddings, aux_embeds), dim=1) if rcnn_embeddings is not None: rcnn_embeds = [] for rcnn_embedding in rcnn_embeddings: rcnn_embed = self.patch_embedding(rcnn_embedding) rcnn_embed = rcnn_embed.flatten(2).transpose(1, 2).flatten(0, 1) # 3*4, 768 3个子图 rcnn_embeds.append(rcnn_embed) rcnn_embeds = torch.stack(rcnn_embeds) # bsz, 12, 768 rcnn_embeds = rcnn_embeds + self.rcnn_position_embedding(self.rcnn_position_ids) embeddings = torch.cat((embeddings, rcnn_embeds), dim=1) return embeddings
[docs]class CLIPTextEmbeddings(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
[docs] def forward(self, input_ids=None, position_ids=None, inputs_embeds=None): seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings
[docs]class CLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads assert ( self.head_dim * self.num_heads == self.embed_dim ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." self.scale = self.head_dim ** -0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
[docs] def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_qks: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz) qks = None if output_qks: qks = (query_states[:, :, 1:, :], key_states[:, :, 1:, :]) # 去掉cls query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) # return attn_output, attn_weights_reshaped return attn_output, attn_output, qks
[docs]def quick_gelu(x): return x * torch.sigmoid(1.702 * x)
[docs]class CLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = quick_gelu self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
[docs] def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
[docs]class CLIPEncoderLayer(nn.Module): def __init__(self, config: CLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = CLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim) self.mlp = CLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim)
[docs] def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: bool = False, output_qks: bool = False, ): """ Args: hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape :obj:`(seq_len, batch, embed_dim)` attention_mask (:obj:`torch.FloatTensor`): attention mask of size :obj:`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size :obj:`(config.encoder_attention_heads,)`. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights, qks = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_qks=output_qks, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) if output_qks: outputs += (qks,) return outputs
[docs]class CLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CLIPConfig base_model_prefix = "clip" supports_gradient_checkpointing = True _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, CLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, CLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim ** -0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, CLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim ** -0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim ** -0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, CLIPMLP): factor = self.config.initializer_factor in_proj_std = ( (module.config.hidden_size ** -0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor ) fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, CLIPModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim ** -0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim ** -0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, CLIPEncoder): module.gradient_checkpointing = value
CLIP_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.CLIPConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.CLIPTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using :class:`~transformers.CLIPFeatureExtractor`. See :meth:`transformers.CLIPFeatureExtractor.__call__` for details. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.CLIPTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using :class:`~transformers.CLIPFeatureExtractor`. See :meth:`transformers.CLIPFeatureExtractor.__call__` for details. return_loss (:obj:`bool`, `optional`): Whether or not to return the contrastive loss. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """
[docs]class CLIPEncoder(nn.Module): """ Transformer encoder consisting of :obj:`config.num_hidden_layers` self attention layers. Each layer is a :class:`~transformers.CLIPEncoderLayer`. Args: config: CLIPConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: CLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False
[docs] def forward( self, inputs_embeds, attention_mask=None, causal_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, output_qks=False, ): r""" Args: inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ causal_attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Causal mask for the text model. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_qks = () if output_qks else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, output_qks=output_qks ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_qks: all_qks = all_qks + (layer_outputs[2],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return CLIPBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, qks=all_qks )
[docs]class CLIPTextTransformer(nn.Module): def __init__(self, config: CLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPTextEmbeddings(config) self.encoder = CLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim)
[docs] @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids=None, attention_mask=None, position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) bsz, seq_len = input_shape # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len).to(hidden_states.device) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
def _build_causal_attention_mask(self, bsz, seq_len): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(bsz, seq_len, seq_len) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal mask = mask.unsqueeze(1) # expand mask return mask
[docs]class CLIPTextModel(CLIPPreTrainedModel): config_class = CLIPTextConfig def __init__(self, config: CLIPTextConfig): super().__init__(config) self.text_model = CLIPTextTransformer(config) self.init_weights()
[docs] def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding
[docs] def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value
[docs] @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig) def forward( self, input_ids=None, attention_mask=None, position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, output_qks=False, ): r""" Returns: Examples:: >>> from transformers import CLIPTokenizer, CLIPTextModel >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooled_output # pooled (EOS token) states """ return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, output_qks=output_qks )
[docs]class CLIPVisionTransformer(nn.Module): def __init__(self, config: CLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = CLIPVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim) self.encoder = CLIPEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim)
[docs] @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, aux_embeddings=None, rcnn_embeddings=None, output_qks=False, ): r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, aux_embeddings, rcnn_embeddings) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, output_qks=output_qks ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return CLIPBaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, qks=encoder_outputs.qks )
[docs]class CLIPVisionModel(CLIPPreTrainedModel): config_class = CLIPVisionConfig def __init__(self, config: CLIPVisionConfig): super().__init__(config) self.vision_model = CLIPVisionTransformer(config) self.init_weights()
[docs] def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding
[docs] @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig) def forward( self, pixel_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples:: >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, CLIPVisionModel >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooled_output # pooled CLS states """ return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )
[docs]@add_start_docstrings(CLIP_START_DOCSTRING) class CLIPModel(CLIPPreTrainedModel): config_class = CLIPConfig def __init__(self, config: CLIPConfig): super().__init__(config) if not isinstance(config.text_config, CLIPTextConfig): raise ValueError( f"config.text_config is expected to be of type CLIPTextConfig but is of type {type(config.text_config)}." ) if not isinstance(config.vision_config, CLIPVisionConfig): raise ValueError( f"config.vision_config is expected to be of type CLIPVisionConfig but is of type {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = CLIPTextTransformer(text_config) self.vision_model = CLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value) self.init_weights()
[docs] def get_text_features( self, input_ids=None, attention_mask=None, position_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: text_features (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of :class:`~transformers.CLIPTextModel`. Examples:: >>> from transformers import CLIPTokenizer, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) """ text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features
[docs] def get_image_features( self, pixel_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: image_features (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of :class:`~transformers.CLIPVisionModel`. Examples:: >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) """ vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features
[docs] @replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig) def forward( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, return_loss=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples:: >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, CLIPModel >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") >>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities """ return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.T loss = None if return_loss: loss = clip_loss(logits_per_text) if not return_dict: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return CLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, )