Source code for deepke.name_entity_re.multimodal.modules.train

import torch
from torch import optim
from tqdm import tqdm
from transformers.optimization import get_linear_schedule_with_warmup
from seqeval.metrics import classification_report


[docs]class Trainer(object): def __init__(self, train_data=None, dev_data=None, test_data=None, model=None, process=None, label_map=None, args=None, logger=None, writer=None) -> None: self.train_data = train_data self.dev_data = dev_data self.test_data = test_data self.model = model self.process = process self.logger = logger self.label_map = label_map self.writer = writer self.refresh_step = 2 self.best_dev_metric = 0 self.best_test_metric = 0 self.best_dev_epoch = None self.best_test_epoch = None self.optimizer = None self.step = 0 self.args = args if self.train_data is not None: self.train_num_steps = len(self.train_data) * args.num_epochs self.multiModal_before_train()
[docs] def train(self): self.step = 0 self.model.train() self.logger.info("***** Running training *****") self.logger.info(" Num instance = %d", len(self.train_data)*self.args.batch_size) self.logger.info(" Num epoch = %d", self.args.num_epochs) self.logger.info(" Batch size = %d", self.args.batch_size) self.logger.info(" Learning rate = {}".format(self.args.lr)) self.logger.info(" Evaluate begin = %d", self.args.eval_begin_epoch) if self.args.load_path is not None: # load model from load_path self.logger.info("Loading model from {}".format(self.args.load_path)) self.model.load_state_dict(torch.load(self.args.load_path)) self.logger.info("Load model successful!") with tqdm(total=self.train_num_steps, postfix='loss:{0:<6.5f}', leave=False, dynamic_ncols=True, initial=self.step) as pbar: self.pbar = pbar avg_loss = 0 for epoch in range(1, self.args.num_epochs+1): y_true, y_pred = [], [] y_true_idx, y_pred_idx = [], [] pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.args.num_epochs)) for batch in self.train_data: self.step += 1 batch = (tup.to(self.args.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) attention_mask, labels, logits, loss = self._step(batch, mode="train") avg_loss += loss.detach().cpu().item() loss.backward() self.optimizer.step() self.scheduler.step() self.optimizer.zero_grad() if isinstance(logits, torch.Tensor): logits = logits.argmax(-1).detach().cpu().numpy() # batch, seq, 1 label_ids = labels.to('cpu').numpy() input_mask = attention_mask.to('cpu').numpy() label_map = {idx:label for label, idx in self.label_map.items()} for i, mask in enumerate(input_mask): temp_1 = [] temp_2 = [] temp_1_idx, temp_2_idx = [], [] for j, m in enumerate(mask): if j == 0: continue if m: if label_map[label_ids[i][j]] != "X" and label_map[label_ids[i][j]] != "[SEP]": temp_1.append(label_map[label_ids[i][j]]) temp_2.append(label_map[logits[i][j]]) temp_1_idx.append(label_ids[i][j]) temp_2_idx.append(logits[i][j]) else: break y_true.append(temp_1) y_pred.append(temp_2) y_true_idx.append(temp_1_idx) y_pred_idx.append(temp_2_idx) if self.step % self.refresh_step == 0: avg_loss = float(avg_loss) / self.refresh_step print_output = "loss:{:<6.5f}".format(avg_loss) pbar.update(self.refresh_step) pbar.set_postfix_str(print_output) if self.writer: self.writer.log({'avg_loss': avg_loss}) avg_loss = 0 if epoch >= self.args.eval_begin_epoch: if self.dev_data: self.evaluate(epoch) # generator to dev. if self.test_data: self.test(epoch) torch.cuda.empty_cache() pbar.close() self.pbar = None self.logger.info("Get best dev performance at epoch {}, best dev f1 score is {}".format(self.best_dev_epoch, self.best_dev_metric)) self.logger.info("Get best test performance at epoch {}, best test f1 score is {}".format(self.best_test_epoch, self.best_test_metric))
[docs] def evaluate(self, epoch): self.model.eval() self.logger.info("***** Running evaluate *****") self.logger.info(" Num instance = %d", len(self.dev_data)*self.args.batch_size) self.logger.info(" Batch size = %d", self.args.batch_size) y_true, y_pred = [], [] y_true_idx, y_pred_idx = [], [] step = 0 with torch.no_grad(): with tqdm(total=len(self.dev_data), leave=False, dynamic_ncols=True) as pbar: pbar.set_description_str(desc="Dev") total_loss = 0 for batch in self.dev_data: step += 1 batch = (tup.to(self.args.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) # to cpu/cuda device attention_mask, labels, logits, loss = self._step(batch, mode="dev") # logits: batch, seq, num_labels total_loss += loss.detach().cpu().item() if isinstance(logits, torch.Tensor): logits = logits.argmax(-1).detach().cpu().numpy() # batch, seq, 1 label_ids = labels.detach().cpu().numpy() input_mask = attention_mask.detach().cpu().numpy() label_map = {idx:label for label, idx in self.label_map.items()} for i, mask in enumerate(input_mask): temp_1 = [] temp_2 = [] temp_1_idx, temp_2_idx = [], [] for j, m in enumerate(mask): if j == 0: continue if m: if label_map[label_ids[i][j]] != "X" and label_map[label_ids[i][j]] != "[SEP]": temp_1.append(label_map[label_ids[i][j]]) temp_2.append(label_map[logits[i][j]]) temp_1_idx.append(label_ids[i][j]) temp_2_idx.append(logits[i][j]) else: break y_true.append(temp_1) y_pred.append(temp_2) y_true_idx.append(temp_1_idx) y_pred_idx.append(temp_2_idx) pbar.update() # evaluate done pbar.close() results = classification_report(y_true, y_pred, digits=4) self.logger.info("***** Dev Eval results *****") self.logger.info("\n%s", results) f1_score = float(results.split('\n')[-4].split(' ')[-2].split(' ')[-1]) if self.writer: self.writer.log({'eva_f1': f1_score}) self.logger.info("Epoch {}/{}, best dev f1: {}, best epoch: {}, current dev f1 score: {}."\ .format(epoch, self.args.num_epochs, self.best_dev_metric, self.best_dev_epoch, f1_score)) if f1_score >= self.best_dev_metric: # this epoch get best performance self.logger.info("Get better performance at epoch {}".format(epoch)) self.best_dev_epoch = epoch self.best_dev_metric = f1_score # update best metric(f1 score) if self.args.save_path is not None: # save model torch.save(self.model.state_dict(), self.args.save_path+"/best_model.pth") self.logger.info("Save best model at {}".format(self.args.save_path)) self.model.train()
[docs] def test(self, epoch): self.model.eval() self.logger.info("\n***** Running testing *****") self.logger.info(" Num instance = %d", len(self.test_data)*self.args.batch_size) self.logger.info(" Batch size = %d", self.args.batch_size) if self.args.load_path is not None: # load model from load_path self.logger.info("Loading model from {}".format(self.args.load_path)) self.model.load_state_dict(torch.load(self.args.load_path)) self.logger.info("Load model successful!") y_true, y_pred = [], [] y_true_idx, y_pred_idx = [], [] with torch.no_grad(): with tqdm(total=len(self.test_data), leave=False, dynamic_ncols=True) as pbar: pbar.set_description_str(desc="Testing") for batch in self.test_data: batch = (tup.to(self.args.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) # to cpu/cuda device attention_mask, labels, logits, loss = self._step(batch, mode="dev") # logits: batch, seq, num_labels if isinstance(logits, torch.Tensor): # logits = logits.argmax(-1).detach().cpu().tolist() # batch, seq, 1 label_ids = labels.detach().cpu().numpy() input_mask = attention_mask.detach().cpu().numpy() label_map = {idx:label for label, idx in self.label_map.items()} for i, mask in enumerate(input_mask): temp_1 = [] temp_2 = [] temp_1_idx, temp_2_idx = [], [] for j, m in enumerate(mask): if j == 0: continue if m: if label_map[label_ids[i][j]] != "X" and label_map[label_ids[i][j]] != "[SEP]": temp_1.append(label_map[label_ids[i][j]]) temp_2.append(label_map[logits[i][j]]) temp_1_idx.append(label_ids[i][j]) temp_2_idx.append(logits[i][j]) else: break y_true.append(temp_1) y_pred.append(temp_2) y_true_idx.append(temp_1_idx) y_pred_idx.append(temp_2_idx) pbar.update() # evaluate done pbar.close() results = classification_report(y_true, y_pred, digits=4) self.logger.info("***** Test Eval results *****") self.logger.info("\n%s", results) f1_score = float(results.split('\n')[-4].split(' ')[-2].split(' ')[-1]) if self.writer: self.writer.log({'test_f1': f1_score}) total_loss = 0 self.logger.info("Epoch {}/{}, best test f1: {}, best epoch: {}, current test f1 score: {}."\ .format(epoch, self.args.num_epochs, self.best_test_metric, self.best_test_epoch, f1_score)) if f1_score >= self.best_test_metric: # this epoch get best performance self.best_test_metric = f1_score self.best_test_epoch = epoch self.model.train()
[docs] def predict(self): self.model.eval() self.logger.info("\n***** Running predicting *****") self.logger.info(" Num instance = %d", len(self.test_data)*self.args.batch_size) self.logger.info(" Batch size = %d", self.args.batch_size) if self.args.load_path is not None: # load model from load_path self.logger.info("Loading model from {}".format(self.args.load_path)) self.model.load_state_dict(torch.load(self.args.load_path)) self.logger.info("Load model successful!") self.model.to(self.args.device) y_pred = [] with torch.no_grad(): with tqdm(total=len(self.test_data), leave=False, dynamic_ncols=True) as pbar: pbar.set_description_str(desc="Predicting") for batch in self.test_data: batch = (tup.to(self.args.device) if isinstance(tup, torch.Tensor) else tup for tup in batch) # to cpu/cuda device attention_mask, labels, logits, loss = self._step(batch, mode="dev") # logits: batch, seq, num_labels if isinstance(logits, torch.Tensor): # logits = logits.argmax(-1).detach().cpu().tolist() # batch, seq, 1 label_ids = labels.detach().cpu().numpy() input_mask = attention_mask.detach().cpu().numpy() label_map = {idx:label for label, idx in self.label_map.items()} for i, mask in enumerate(input_mask): temp_1 = [] for j, m in enumerate(mask): if j == 0: continue if m: if label_map[label_ids[i][j]] != "X" and label_map[label_ids[i][j]] != "[SEP]": temp_1.append(label_map[logits[i][j]]) else: break y_pred.append(temp_1) pbar.update() # evaluate done pbar.close()
def _step(self, batch, mode="train"): input_ids, token_type_ids, attention_mask, labels, images, aux_imgs, rcnn_imgs = batch logits, loss = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=labels, images=images, aux_imgs=aux_imgs, rcnn_imgs=rcnn_imgs) return attention_mask, labels, logits, loss
[docs] def multiModal_before_train(self): # bert lr parameters = [] params = {'lr':self.args.lr, 'weight_decay':1e-2} params['params'] = [] for name, param in self.model.named_parameters(): if 'text' in name: params['params'].append(param) parameters.append(params) # vit lr params = {'lr':3e-5, 'weight_decay':1e-2} params['params'] = [] for name, param in self.model.named_parameters(): if 'vision' in name: params['params'].append(param) parameters.append(params) # crf lr params = {'lr':5e-2, 'weight_decay':1e-2} params['params'] = [] for name, param in self.model.named_parameters(): if 'crf' in name or name.startswith('fc'): params['params'].append(param) parameters.append(params) self.optimizer = optim.AdamW(parameters) self.model.to(self.args.device) self.scheduler = get_linear_schedule_with_warmup(optimizer=self.optimizer, num_warmup_steps=self.args.warmup_ratio*self.train_num_steps, num_training_steps=self.train_num_steps)