Source code for deepke.relation_extraction.document.module

import torch.nn as nn
import torch.nn.functional as F
import torch


[docs]class AttentionUNet(torch.nn.Module): """ UNet, down sampling & up sampling for global reasoning """ def __init__(self, input_channels, class_number, **kwargs): super(AttentionUNet, self).__init__() down_channel = kwargs['down_channel'] # default = 256 down_channel_2 = down_channel * 2 up_channel_1 = down_channel_2 * 2 up_channel_2 = down_channel * 2 self.inc = InConv(input_channels, down_channel) self.down1 = DownLayer(down_channel, down_channel_2) self.down2 = DownLayer(down_channel_2, down_channel_2) self.up1 = UpLayer(up_channel_1, up_channel_1 // 4) self.up2 = UpLayer(up_channel_2, up_channel_2 // 4) self.outc = OutConv(up_channel_2 // 4, class_number)
[docs] def forward(self, attention_channels): """ Given multi-channel attention map, return the logits of every one mapping into 3-class :param attention_channels: :return: """ # attention_channels as the shape of: batch_size x channel x width x height x = attention_channels x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x = self.up1(x3, x2) x = self.up2(x, x1) output = self.outc(x) # attn_map as the shape of: batch_size x width x height x class output = output.permute(0, 2, 3, 1).contiguous() return output
[docs]class DoubleConv(nn.Module): """(conv => [BN] => ReLU) * 2""" def __init__(self, in_ch, out_ch): super(DoubleConv, self).__init__() self.double_conv = nn.Sequential(nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True))
[docs] def forward(self, x): x = self.double_conv(x) return x
[docs]class InConv(nn.Module): def __init__(self, in_ch, out_ch): super(InConv, self).__init__() self.conv = DoubleConv(in_ch, out_ch)
[docs] def forward(self, x): x = self.conv(x) return x
[docs]class DownLayer(nn.Module): def __init__(self, in_ch, out_ch): super(DownLayer, self).__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(kernel_size=2), DoubleConv(in_ch, out_ch) )
[docs] def forward(self, x): x = self.maxpool_conv(x) return x
[docs]class UpLayer(nn.Module): def __init__(self, in_ch, out_ch, bilinear=True): super(UpLayer, self).__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_ch // 2, in_ch // 2, 2, stride=2) self.conv = DoubleConv(in_ch, out_ch)
[docs] def forward(self, x1, x2): x1 = self.up(x1) diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2)) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x
[docs]class OutConv(nn.Module): def __init__(self, in_ch, out_ch): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1)
[docs] def forward(self, x): x = self.conv(x) return x