Source code for deepke.relation_extraction.multimodal.models.clip.feature_extraction_utils

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
 Feature extraction saving/loading class for common feature extractors.
"""

import copy
import json
import os
from collections import UserDict
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union

import numpy as np

from transformers.file_utils import (
    cached_path,
    hf_bucket_url,
    is_flax_available,
    is_remote_url,
    is_tf_available,
    is_torch_available,
    torch_required,
)
from transformers.utils import logging
from .file_utils import *

FEATURE_EXTRACTOR_NAME = "preprocessor_config.json"
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False

[docs]def is_offline_mode(): return _is_offline_mode
def _is_jax(x): import jax.numpy as jnp # noqa: F811 return isinstance(x, jnp.ndarray) def _is_numpy(x): return isinstance(x, np.ndarray) def _is_torch_device(x): import torch return isinstance(x, torch.device) from enum import Enum
[docs]class ExplicitEnum(Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" )
[docs]class TensorType(ExplicitEnum): """ Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax"
if TYPE_CHECKING: if is_torch_available(): import torch logger = logging.get_logger(__name__) PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821
[docs]class BatchFeature(UserDict): r""" Holds the output of the :meth:`~transformers.SequenceFeatureExtractor.pad` and feature extractor specific ``__call__`` methods. This class is derived from a python dictionary and can be used as a dictionary. Args: data (:obj:`dict`): Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', etc.). tensor_type (:obj:`Union[None, str, TensorType]`, `optional`): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. """ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): super().__init__(data) self.convert_to_tensors(tensor_type=tensor_type) def __getitem__(self, item: str) -> Union[Any]: """ If the key is a string, returns the value of the dict associated to :obj:`key` ('input_values', 'attention_mask', etc.). """ if isinstance(item, str): return self.data[item] else: raise KeyError("Indexing with integers is not available when using Python based feature extractors") def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data} def __setstate__(self, state): if "data" in state: self.data = state["data"] # Copied from transformers.tokenization_utils_base.BatchEncoding.keys
[docs] def keys(self): return self.data.keys()
# Copied from transformers.tokenization_utils_base.BatchEncoding.values
[docs] def values(self): return self.data.values()
# Copied from transformers.tokenization_utils_base.BatchEncoding.items
[docs] def items(self): return self.data.items()
[docs] def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): """ Convert the inner content to tensors. Args: tensor_type (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`): The type of tensors to use. If :obj:`str`, should be one of the values of the enum :class:`~transformers.file_utils.TensorType`. If :obj:`None`, no modification is done. """ if tensor_type is None: return self # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch as_tensor = torch.tensor is_tensor = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = _is_jax else: as_tensor = np.asarray is_tensor = _is_numpy # Do the tensor conversion in batch for key, value in self.items(): try: if not is_tensor(value): tensor = as_tensor(value) self[key] = tensor except: # noqa E722 if key == "overflowing_values": raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") raise ValueError( "Unable to create tensor, you should probably activate padding " "with 'padding=True' to have batched tensors with the same length." ) return self
[docs] @torch_required # Copied from transformers.tokenization_utils_base.BatchEncoding.to with BatchEncoding->BatchFeature def to(self, device: Union[str, "torch.device"]) -> "BatchFeature": """ Send all values to device by calling :obj:`v.to(device)` (PyTorch only). Args: device (:obj:`str` or :obj:`torch.device`): The device to put the tensors on. Returns: :class:`~transformers.BatchFeature`: The same instance after modification. """ # This check catches things like APEX blindly calling "to" on all inputs to a module # Otherwise it passes the casts down and casts the LongTensor containing the token idxs # into a HalfTensor if isinstance(device, str) or _is_torch_device(device) or isinstance(device, int): self.data = {k: v.to(device=device) for k, v in self.data.items()} else: logger.warning(f"Attempting to cast a BatchFeature to type {str(device)}. This is not supported.") return self
[docs]class FeatureExtractionMixin: """ This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature extractors. """ def __init__(self, **kwargs): """Set elements of `kwargs` as attributes.""" # Additional attributes without default values for key, value in kwargs.items(): try: setattr(self, key, value) except AttributeError as err: logger.error(f"Can't set {key} with value {value} for {self}") raise err
[docs] @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> PreTrainedFeatureExtractor: r""" Instantiate a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a feature extractor, *e.g.* a derived class of :class:`~transformers.SequenceFeatureExtractor`. Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): This can be either: - a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing a feature extractor file saved using the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.save_pretrained` method, e.g., ``./my_model_directory/``. - a path or url to a saved feature extractor JSON `file`, e.g., ``./my_model_directory/preprocessor_config.json``. cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (:obj:`Dict[str, str]`, `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. use_auth_token (:obj:`str` or `bool`, `optional`): The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`). revision(:obj:`str`, `optional`, defaults to :obj:`"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. return_unused_kwargs (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`False`, then this function returns just the final feature extractor object. If :obj:`True`, then this functions returns a :obj:`Tuple(feature_extractor, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of ``kwargs`` which has not been used to update ``feature_extractor`` and is otherwise ignored. kwargs (:obj:`Dict[str, Any]`, `optional`): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the ``return_unused_kwargs`` keyword parameter. .. note:: Passing :obj:`use_auth_token=True` is required when you want to use a private model. Returns: A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`. Examples:: # We can't instantiate directly the base class `FeatureExtractionMixin` nor `SequenceFeatureExtractor` so let's show the examples on a # derived class: `Wav2Vec2FeatureExtractor` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') # Download feature_extraction_config from huggingface.co and cache. feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/') # E.g. feature_extractor (or model) was saved using `save_pretrained('./test/saved_model/')` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('./test/saved_model/preprocessor_config.json') feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False) assert feature_extractor.return_attention_mask is False feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h', return_attention_mask=False, foo=False, return_unused_kwargs=True) assert feature_extractor.return_attention_mask is False assert unused_kwargs == {'foo': False} """ feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_dict(feature_extractor_dict, **kwargs)
[docs] def save_pretrained(self, save_directory: Union[str, os.PathLike]): """ Save a feature_extractor object to the directory ``save_directory``, so that it can be re-loaded using the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.from_pretrained` class method. Args: save_directory (:obj:`str` or :obj:`os.PathLike`): Directory where the feature extractor JSON file will be saved (will be created if it does not exist). """ if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) # If we save using the predefined names, we can load using `from_pretrained` output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) self.to_json_file(output_feature_extractor_file) logger.info(f"Configuration saved in {output_feature_extractor_file}")
[docs] @classmethod def get_feature_extractor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` using ``from_dict``. Parameters: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. Returns: :obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) use_auth_token = kwargs.pop("use_auth_token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): feature_extractor_file = pretrained_model_name_or_path else: feature_extractor_file = hf_bucket_url( pretrained_model_name_or_path, filename=FEATURE_EXTRACTOR_NAME, revision=revision, mirror=None ) try: # Load from URL or cache if already cached resolved_feature_extractor_file = cached_path( feature_extractor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, use_auth_token=use_auth_token, user_agent=user_agent, ) # Load feature_extractor dict with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) except EnvironmentError as err: logger.error(err) msg = ( f"Can't load feature extractor for '{pretrained_model_name_or_path}'. Make sure that:\n\n" f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {FEATURE_EXTRACTOR_NAME} file\n\n" ) raise EnvironmentError(msg) except json.JSONDecodeError: msg = ( f"Couldn't reach server at '{feature_extractor_file}' to download feature extractor configuration file or " "feature extractor configuration file is not a valid JSON file. " f"Please check network or file content here: {resolved_feature_extractor_file}." ) raise EnvironmentError(msg) if resolved_feature_extractor_file == feature_extractor_file: logger.info(f"loading feature extractor configuration file {feature_extractor_file}") else: logger.info( f"loading feature extractor configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" ) return feature_extractor_dict, kwargs
[docs] @classmethod def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: """ Instantiates a type of :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from a Python dictionary of parameters. Args: feature_extractor_dict (:obj:`Dict[str, Any]`): Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the :func:`~transformers.feature_extraction_utils.FeatureExtractionMixin.to_dict` method. kwargs (:obj:`Dict[str, Any]`): Additional parameters from which to initialize the feature extractor object. Returns: :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature extractor object instantiated from those parameters. """ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) feature_extractor = cls(**feature_extractor_dict) # Update feature_extractor with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(feature_extractor, key): setattr(feature_extractor, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) logger.info(f"Feature extractor {feature_extractor}") if return_unused_kwargs: return feature_extractor, kwargs else: return feature_extractor
[docs] def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: :obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this feature extractor instance. """ output = copy.deepcopy(self.__dict__) output["feature_extractor_type"] = self.__class__.__name__ return output
[docs] @classmethod def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: """ Instantiates a feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin` from the path to a JSON file of parameters. Args: json_file (:obj:`str` or :obj:`os.PathLike`): Path to the JSON file containing the parameters. Returns: A feature extractor of type :class:`~transformers.feature_extraction_utils.FeatureExtractionMixin`: The feature_extractor object instantiated from that JSON file. """ with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) return cls(**feature_extractor_dict)
[docs] def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: :obj:`str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
[docs] def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (:obj:`str` or :obj:`os.PathLike`): Path to the JSON file in which this feature_extractor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string())
def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}"