Source code for deepke.relation_extraction.multimodal.models.clip.image_utils
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import PIL.Image
from .file_utils import is_torch_available, _is_torch
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
# In the future we can add a TF implementation here when we have TF models.
[docs]class ImageFeatureExtractionMixin:
"""
Mixin that contain utilities for preparing image features.
"""
def _ensure_format_supported(self, image):
if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image):
raise ValueError(
f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and "
"`torch.Tensor` are."
)
[docs] def to_pil_image(self, image, rescale=None):
"""
Converts :obj:`image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last
axis if needed.
Args:
image (:obj:`PIL.Image.Image` or :obj:`numpy.ndarray` or :obj:`torch.Tensor`):
The image to convert to the PIL Image format.
rescale (:obj:`bool`, `optional`):
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
default to :obj:`True` if the image type is a floating type, :obj:`False` otherwise.
"""
self._ensure_format_supported(image)
if is_torch_tensor(image):
image = image.numpy()
if isinstance(image, np.ndarray):
if rescale is None:
# rescale default to the array being of floating type.
rescale = isinstance(image.flat[0], np.floating)
# If the channel as been moved to first dim, we put it back at the end.
if image.ndim == 3 and image.shape[0] in [1, 3]:
image = image.transpose(1, 2, 0)
if rescale:
image = image * 255
image = image.astype(np.uint8)
return PIL.Image.fromarray(image)
return image
[docs] def to_numpy_array(self, image, rescale=None, channel_first=True):
"""
Converts :obj:`image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
dimension.
Args:
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The image to convert to a NumPy array.
rescale (:obj:`bool`, `optional`):
Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
default to :obj:`True` if the image is a PIL Image or an array/tensor of integers, :obj:`False`
otherwise.
channel_first (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to permute the dimensions of the image to put the channel dimension first.
"""
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if is_torch_tensor(image):
image = image.numpy()
if rescale is None:
rescale = isinstance(image.flat[0], np.integer)
if rescale:
image = image.astype(np.float32) / 255.0
if channel_first:
image = image.transpose(2, 0, 1)
return image
[docs] def normalize(self, image, mean, std):
"""
Normalizes :obj:`image` with :obj:`mean` and :obj:`std`. Note that this will trigger a conversion of
:obj:`image` to a NumPy array if it's a PIL Image.
Args:
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The image to normalize.
mean (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The mean (per channel) to use for normalization.
std (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The standard deviation (per channel) to use for normalization.
"""
self._ensure_format_supported(image)
if isinstance(image, PIL.Image.Image):
image = self.to_numpy_array(image)
if isinstance(image, np.ndarray):
if not isinstance(mean, np.ndarray):
mean = np.array(mean).astype(image.dtype)
if not isinstance(std, np.ndarray):
std = np.array(std).astype(image.dtype)
elif is_torch_tensor(image):
import torch
if not isinstance(mean, torch.Tensor):
mean = torch.tensor(mean)
if not isinstance(std, torch.Tensor):
std = torch.tensor(std)
if image.ndim == 3 and image.shape[0] in [1, 3]:
return (image - mean[:, None, None]) / std[:, None, None]
else:
return (image - mean) / std
[docs] def resize(self, image, size, resample=PIL.Image.BILINEAR):
"""
Resizes :obj:`image`. Note that this will trigger a conversion of :obj:`image` to a PIL Image.
Args:
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The image to resize.
size (:obj:`int` or :obj:`Tuple[int, int]`):
The size to use for resizing the image.
resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`):
The filter to user for resampling.
"""
self._ensure_format_supported(image)
if not isinstance(size, tuple):
size = (size, size)
if not isinstance(image, PIL.Image.Image):
image = self.to_pil_image(image)
return image.resize(size, resample=resample)
[docs] def center_crop(self, image, size):
"""
Crops :obj:`image` to the given size using a center crop. Note that if the image is too small to be cropped to
the size given, it will be padded (so the returned result has the size asked).
Args:
image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`):
The image to resize.
size (:obj:`int` or :obj:`Tuple[int, int]`):
The size to which crop the image.
"""
self._ensure_format_supported(image)
if not isinstance(size, tuple):
size = (size, size)
# PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width)
image_shape = (image.size[1], image.size[0]) if isinstance(image, PIL.Image.Image) else image.shape[-2:]
top = (image_shape[0] - size[0]) // 2
bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
left = (image_shape[1] - size[1]) // 2
right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
# For PIL Images we have a method to crop directly.
if isinstance(image, PIL.Image.Image):
return image.crop((left, top, right, bottom))
# Check if all the dimensions are inside the image.
if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]:
return image[..., top:bottom, left:right]
# Otherwise, we may need to pad if the image is too small. Oh joy...
new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1]))
if isinstance(image, np.ndarray):
new_image = np.zeros_like(image, shape=new_shape)
elif is_torch_tensor(image):
new_image = image.new_zeros(new_shape)
top_pad = (new_shape[-2] - image_shape[0]) // 2
bottom_pad = top_pad + image_shape[0]
left_pad = (new_shape[-1] - image_shape[1]) // 2
right_pad = left_pad + image_shape[1]
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
top += top_pad
bottom += top_pad
left += left_pad
right += left_pad
return new_image[
..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right)
]