Source code for deepke.relation_extraction.multimodal.models.clip.image_utils

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import PIL.Image

from .file_utils import is_torch_available, _is_torch


IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]

def _is_torch_device(x):
    import torch

    return isinstance(x, torch.device)

[docs]def is_torch_tensor(obj): return _is_torch(obj) if is_torch_available() else False
# In the future we can add a TF implementation here when we have TF models.
[docs]class ImageFeatureExtractionMixin: """ Mixin that contain utilities for preparing image features. """ def _ensure_format_supported(self, image): if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image): raise ValueError( f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and " "`torch.Tensor` are." )
[docs] def to_pil_image(self, image, rescale=None): """ Converts :obj:`image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if needed. Args: image (:obj:`PIL.Image.Image` or :obj:`numpy.ndarray` or :obj:`torch.Tensor`): The image to convert to the PIL Image format. rescale (:obj:`bool`, `optional`): Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default to :obj:`True` if the image type is a floating type, :obj:`False` otherwise. """ self._ensure_format_supported(image) if is_torch_tensor(image): image = image.numpy() if isinstance(image, np.ndarray): if rescale is None: # rescale default to the array being of floating type. rescale = isinstance(image.flat[0], np.floating) # If the channel as been moved to first dim, we put it back at the end. if image.ndim == 3 and image.shape[0] in [1, 3]: image = image.transpose(1, 2, 0) if rescale: image = image * 255 image = image.astype(np.uint8) return PIL.Image.fromarray(image) return image
[docs] def to_numpy_array(self, image, rescale=None, channel_first=True): """ Converts :obj:`image` to a numpy array. Optionally rescales it and puts the channel dimension as the first dimension. Args: image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The image to convert to a NumPy array. rescale (:obj:`bool`, `optional`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will default to :obj:`True` if the image is a PIL Image or an array/tensor of integers, :obj:`False` otherwise. channel_first (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to permute the dimensions of the image to put the channel dimension first. """ self._ensure_format_supported(image) if isinstance(image, PIL.Image.Image): image = np.array(image) if is_torch_tensor(image): image = image.numpy() if rescale is None: rescale = isinstance(image.flat[0], np.integer) if rescale: image = image.astype(np.float32) / 255.0 if channel_first: image = image.transpose(2, 0, 1) return image
[docs] def normalize(self, image, mean, std): """ Normalizes :obj:`image` with :obj:`mean` and :obj:`std`. Note that this will trigger a conversion of :obj:`image` to a NumPy array if it's a PIL Image. Args: image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The image to normalize. mean (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The mean (per channel) to use for normalization. std (:obj:`List[float]` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The standard deviation (per channel) to use for normalization. """ self._ensure_format_supported(image) if isinstance(image, PIL.Image.Image): image = self.to_numpy_array(image) if isinstance(image, np.ndarray): if not isinstance(mean, np.ndarray): mean = np.array(mean).astype(image.dtype) if not isinstance(std, np.ndarray): std = np.array(std).astype(image.dtype) elif is_torch_tensor(image): import torch if not isinstance(mean, torch.Tensor): mean = torch.tensor(mean) if not isinstance(std, torch.Tensor): std = torch.tensor(std) if image.ndim == 3 and image.shape[0] in [1, 3]: return (image - mean[:, None, None]) / std[:, None, None] else: return (image - mean) / std
[docs] def resize(self, image, size, resample=PIL.Image.BILINEAR): """ Resizes :obj:`image`. Note that this will trigger a conversion of :obj:`image` to a PIL Image. Args: image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The image to resize. size (:obj:`int` or :obj:`Tuple[int, int]`): The size to use for resizing the image. resample (:obj:`int`, `optional`, defaults to :obj:`PIL.Image.BILINEAR`): The filter to user for resampling. """ self._ensure_format_supported(image) if not isinstance(size, tuple): size = (size, size) if not isinstance(image, PIL.Image.Image): image = self.to_pil_image(image) return image.resize(size, resample=resample)
[docs] def center_crop(self, image, size): """ Crops :obj:`image` to the given size using a center crop. Note that if the image is too small to be cropped to the size given, it will be padded (so the returned result has the size asked). Args: image (:obj:`PIL.Image.Image` or :obj:`np.ndarray` or :obj:`torch.Tensor`): The image to resize. size (:obj:`int` or :obj:`Tuple[int, int]`): The size to which crop the image. """ self._ensure_format_supported(image) if not isinstance(size, tuple): size = (size, size) # PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width) image_shape = (image.size[1], image.size[0]) if isinstance(image, PIL.Image.Image) else image.shape[-2:] top = (image_shape[0] - size[0]) // 2 bottom = top + size[0] # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result. left = (image_shape[1] - size[1]) // 2 right = left + size[1] # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result. # For PIL Images we have a method to crop directly. if isinstance(image, PIL.Image.Image): return image.crop((left, top, right, bottom)) # Check if all the dimensions are inside the image. if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]: return image[..., top:bottom, left:right] # Otherwise, we may need to pad if the image is too small. Oh joy... new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1])) if isinstance(image, np.ndarray): new_image = np.zeros_like(image, shape=new_shape) elif is_torch_tensor(image): new_image = image.new_zeros(new_shape) top_pad = (new_shape[-2] - image_shape[0]) // 2 bottom_pad = top_pad + image_shape[0] left_pad = (new_shape[-1] - image_shape[1]) // 2 right_pad = left_pad + image_shape[1] new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image top += top_pad bottom += top_pad left += left_pad right += left_pad return new_image[ ..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right) ]