Source code for deepke.relation_extraction.standard.models.BiLSTM

import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
import torch.nn as nn
from . import BasicModule
from module import Embedding, RNN


[docs]class BiLSTM(BasicModule): def __init__(self, cfg): super(BiLSTM, self).__init__() if cfg.dim_strategy == 'cat': cfg.input_size = cfg.word_dim + 2 * cfg.pos_dim else: cfg.input_size = cfg.word_dim self.embedding = Embedding(cfg) self.bilstm = RNN(cfg) self.fc = nn.Linear(cfg.hidden_size, cfg.num_relations) self.dropout = nn.Dropout(cfg.dropout)
[docs] def forward(self, x): word, lens, head_pos, tail_pos = x['word'], x['lens'], x['head_pos'], x['tail_pos'] inputs = self.embedding(word, head_pos, tail_pos) out, out_pool = self.bilstm(inputs, lens) output = self.fc(out_pool) return output