Source code for deepke.relation_extraction.standard.models.Transformer

import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
import torch.nn as nn
from . import BasicModule
from module import Embedding
from module import Transformer as TransformerBlock
from utils import seq_len_to_mask


[docs]class Transformer(BasicModule): def __init__(self, cfg): super(Transformer, self).__init__() if cfg.dim_strategy == 'cat': cfg.hidden_size = cfg.word_dim + 2 * cfg.pos_dim else: cfg.hidden_size = cfg.word_dim self.embedding = Embedding(cfg) self.transformer = TransformerBlock(cfg) self.fc = nn.Linear(cfg.hidden_size, cfg.num_relations)
[docs] def forward(self, x): word, lens, head_pos, tail_pos = x['word'], x['lens'], x['head_pos'], x['tail_pos'] mask = seq_len_to_mask(lens) inputs = self.embedding(word, head_pos, tail_pos) last_layer_hidden_state, all_hidden_states, all_attentions = self.transformer(inputs, key_padding_mask=mask) out_pool = last_layer_hidden_state.max(dim=1)[0] output = self.fc(out_pool) return output