Source code for deepke.relation_extraction.standard.module.CNN

import math
import torch
import torch.nn as nn
import torch.nn.functional as F


[docs]class GELU(nn.Module): def __init__(self): super(GELU, self).__init__()
[docs] def forward(self, x): return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
[docs]class CNN(nn.Module): """ nlp 里为了保证输出的句长 = 输入的句长,一般使用奇数 kernel_size,如 [3, 5, 7, 9] 当然也可以不等长输出,keep_length 设为 False 此时,padding = k // 2 stride 一般为 1 """ def __init__(self, config): """ in_channels : 一般就是 word embedding 的维度,或者 hidden size 的维度 out_channels : int kernel_sizes : list 为了保证输出长度=输入长度,必须为奇数: 3, 5, 7... activation : [relu, lrelu, prelu, selu, celu, gelu, sigmoid, tanh] pooling_strategy : [max, avg, cls] dropout: : float """ super(CNN, self).__init__() # self.xxx = config.xxx self.in_channels = config.in_channels self.out_channels = config.out_channels self.kernel_sizes = config.kernel_sizes self.activation = config.activation self.pooling_strategy = config.pooling_strategy self.dropout = config.dropout self.keep_length = config.keep_length for kernel_size in self.kernel_sizes: assert kernel_size % 2 == 1, "kernel size has to be odd numbers." # convolution self.convs = nn.ModuleList([ nn.Conv1d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=1, padding=k // 2 if self.keep_length else 0, dilation=1, groups=1, bias=False) for k in self.kernel_sizes ]) # activation function assert self.activation in ['relu', 'lrelu', 'prelu', 'selu', 'celu', 'gelu', 'sigmoid', 'tanh'], \ 'activation function must choose from [relu, lrelu, prelu, selu, celu, gelu, sigmoid, tanh]' self.activations = nn.ModuleDict([ ['relu', nn.ReLU()], ['lrelu', nn.LeakyReLU()], ['prelu', nn.PReLU()], ['selu', nn.SELU()], ['celu', nn.CELU()], ['gelu', GELU()], ['sigmoid', nn.Sigmoid()], ['tanh', nn.Tanh()], ]) # pooling assert self.pooling_strategy in ['max', 'avg', 'cls'], 'pooling strategy must choose from [max, avg, cls]' self.dropout = nn.Dropout(self.dropout)
[docs] def forward(self, x, mask=None): """ :param x: torch.Tensor [batch_size, seq_max_length, input_size], [B, L, H] 一般是经过embedding后的值 :param mask: [batch_size, max_len], 句长部分为0,padding部分为1。不影响卷积运算,max-pool一定不会pool到pad为0的位置 :return: """ # [B, L, H] -> [B, H, L] (注释:将 H 维度当作输入 channel 维度) x = torch.transpose(x, 1, 2) # convolution + activation [[B, H, L], ... ] act_fn = self.activations[self.activation] x = [act_fn(conv(x)) for conv in self.convs] x = torch.cat(x, dim=1) # mask if mask is not None: # [B, L] -> [B, 1, L] mask = mask.unsqueeze(1) x = x.masked_fill_(mask, 1e-12) # pooling # [[B, H, L], ... ] -> [[B, H], ... ] if self.pooling_strategy == 'max': xp = F.max_pool1d(x, kernel_size=x.size(2)).squeeze(2) # 等价于 xp = torch.max(x, dim=2)[0] elif self.pooling_strategy == 'avg': x_len = mask.squeeze().eq(0).sum(-1).unsqueeze(-1).to(torch.float).to(device=mask.device) xp = torch.sum(x, dim=-1) / x_len else: # self.pooling_strategy == 'cls' xp = x[:, :, 0] x = x.transpose(1, 2) x = self.dropout(x) xp = self.dropout(xp) return x, xp # [B, L, Hs], [B, Hs]