import os
import logging
from collections import OrderedDict
from typing import List, Dict
from transformers import BertTokenizer
from .serializer import Serializer
from .vocab import Vocab
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../")))
from utils import save_pkl, load_csv
logger = logging.getLogger(__name__)
__all__ = [
"_handle_pos_limit",
"_add_pos_seq",
"_convert_tokens_into_index",
"_serialize_sentence",
"_lm_serialize",
"_add_relation_data",
"_handle_relation_data",
"preprocess"
]
def _handle_pos_limit(pos: List[int], limit: int) -> List[int]:
"""
处理句子长度,设定句长限制
Args :
pos (List[int]) : 句子对应的List
limit (int) : 限制的数
Return :
[p + limit + 1 for p in pos] (List[int]) : 处理后的结果
"""
for i, p in enumerate(pos):
if p > limit:
pos[i] = limit
if p < -limit:
pos[i] = -limit
return [p + limit + 1 for p in pos]
def _add_pos_seq(train_data: List[Dict], cfg):
"""
增加位置序列
Args :
train_data (List[Dict]) : 数据集合
cfg : 配置文件
"""
for d in train_data:
entities_idx = [d['head_idx'], d['tail_idx']
] if d['head_idx'] < d['tail_idx'] else [d['tail_idx'], d['head_idx']]
d['head_pos'] = list(map(lambda i: i - d['head_idx'], list(range(d['seq_len']))))
d['head_pos'] = _handle_pos_limit(d['head_pos'], int(cfg.pos_limit))
d['tail_pos'] = list(map(lambda i: i - d['tail_idx'], list(range(d['seq_len']))))
d['tail_pos'] = _handle_pos_limit(d['tail_pos'], int(cfg.pos_limit))
if cfg.model_name == 'cnn':
if cfg.use_pcnn:
# 当句子无法分隔成三段时,无法使用PCNN
# 比如: [head, ... tail] or [... head, tail, ...] 无法使用统一方式 mask 分段
d['entities_pos'] = [1] * (entities_idx[0] + 1) + [2] * (entities_idx[1] - entities_idx[0] - 1) +\
[3] * (d['seq_len'] - entities_idx[1])
def _convert_tokens_into_index(data: List[Dict], vocab):
"""
将tokens转换成index值
Args :
data (List[Dict]) : 数据集合
vocab (Class) : 词汇表
"""
unk_str = '[UNK]'
unk_idx = vocab.word2idx[unk_str]
for d in data:
d['token2idx'] = [vocab.word2idx.get(i, unk_idx) for i in d['tokens']]
d['seq_len'] = len(d['token2idx'])
def _serialize_sentence(data: List[Dict], serial, cfg):
"""
将句子分词
Args :
data (List[Dict]) : 数据集合
serial (Class): Serializer类
cfg : 配置文件
"""
for d in data:
sent = d['sentence'].strip()
if d['head'] in d['tail']:
sent = sent.replace(d['tail'], ' tail ', 1).replace(d['head'], ' head ', 1)
else:
sent = sent.replace(d['head'], ' head ', 1).replace(d['tail'], ' tail ', 1)
d['tokens'] = serial(sent, never_split=['head', 'tail'])
head_idx, tail_idx = d['tokens'].index('head'), d['tokens'].index('tail')
d['head_idx'], d['tail_idx'] = head_idx, tail_idx
if cfg.replace_entity_with_type:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD_' + d['head_type'], 'TAIL_' + d['tail_type']
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head_type'], d['tail_type']
else:
if cfg.replace_entity_with_scope:
d['tokens'][head_idx], d['tokens'][tail_idx] = 'HEAD', 'TAIL'
else:
d['tokens'][head_idx], d['tokens'][tail_idx] = d['head'], d['tail']
def _lm_serialize(data: List[Dict], cfg):
"""
lm模型分词
Args :
data (List[Dict]) : 数据集合
cfg : 配置文件
"""
logger.info('use bert tokenizer...')
tokenizer = BertTokenizer.from_pretrained(cfg.lm_file)
for d in data:
sent = d['sentence'].strip()
sent = sent.replace(d['head'], d['head_type'], 1).replace(d['tail'], d['tail_type'], 1)
sent += '[SEP]' + d['head'] + '[SEP]' + d['tail']
d['token2idx'] = tokenizer.encode(sent, add_special_tokens=True)
d['seq_len'] = len(d['token2idx'])
def _add_relation_data(rels: Dict, data: List) -> None:
"""
增加关系数据
Args :
rels (Dict) : 关系字典集合
data (List) : 所需增加的关系数据
"""
for d in data:
d['rel2idx'] = rels[d['relation']]['index']
d['head_type'] = rels[d['relation']]['head_type']
d['tail_type'] = rels[d['relation']]['tail_type']
def _handle_relation_data(relation_data: List[Dict]) -> Dict:
"""
处理关系数据,每一个关系有index,head_type,tail_type三个属性
Args:
relation_data (List[Dict]) : 所需要处理的关系数据
Return :
rels (Dict) : 处理之后的结果
"""
rels = OrderedDict()
relation_data = sorted(relation_data, key=lambda i: int(i['index']))
for d in relation_data:
rels[d['relation']] = {
'index': int(d['index']),
'head_type': d['head_type'],
'tail_type': d['tail_type'],
}
return rels
def _clean_data(data):
"""
清洗数据,去除一些头尾实体不存在的句子
Args:
data((List[Dict])): 需要处理的数据
Returns:
clean_data : 处理后的数据
"""
clean_data = []
for d in data:
sent = d['sentence']
head = d['head']
tail = d['tail']
if head in sent and tail in sent:
clean_data.append(d)
return clean_data
[docs]def preprocess(cfg):
"""
数据预处理阶段
"""
logger.info('===== start preprocess data =====')
train_fp = os.path.join(cfg.cwd, cfg.data_path, 'train.csv')
valid_fp = os.path.join(cfg.cwd, cfg.data_path, 'valid.csv')
test_fp = os.path.join(cfg.cwd, cfg.data_path, 'test.csv')
relation_fp = os.path.join(cfg.cwd, cfg.data_path, 'relation.csv')
logger.info('load raw files...')
train_data = load_csv(train_fp)
valid_data = load_csv(valid_fp)
test_data = load_csv(test_fp)
relation_data = load_csv(relation_fp)
logger.info('clean data...')
train_data = _clean_data(train_data)
valid_data = _clean_data(valid_data)
test_data = _clean_data(test_data)
logger.info('convert relation into index...')
rels = _handle_relation_data(relation_data)
_add_relation_data(rels, train_data)
_add_relation_data(rels, valid_data)
_add_relation_data(rels, test_data)
logger.info('verify whether use pretrained language models...')
if cfg.model_name == 'lm':
logger.info('use pretrained language models serialize sentence...')
_lm_serialize(train_data, cfg)
_lm_serialize(valid_data, cfg)
_lm_serialize(test_data, cfg)
else:
logger.info('serialize sentence into tokens...')
serializer = Serializer(do_chinese_split=cfg.chinese_split, do_lower_case=True)
serial = serializer.serialize
_serialize_sentence(train_data, serial, cfg)
_serialize_sentence(valid_data, serial, cfg)
_serialize_sentence(test_data, serial, cfg)
logger.info('build vocabulary...')
vocab = Vocab('word')
train_tokens = [d['tokens'] for d in train_data]
valid_tokens = [d['tokens'] for d in valid_data]
test_tokens = [d['tokens'] for d in test_data]
sent_tokens = [*train_tokens, *valid_tokens, *test_tokens]
for sent in sent_tokens:
vocab.add_words(sent)
vocab.trim(min_freq=cfg.min_freq)
logger.info('convert tokens into index...')
_convert_tokens_into_index(train_data, vocab)
_convert_tokens_into_index(valid_data, vocab)
_convert_tokens_into_index(test_data, vocab)
logger.info('build position sequence...')
_add_pos_seq(train_data, cfg)
_add_pos_seq(valid_data, cfg)
_add_pos_seq(test_data, cfg)
logger.info('save data for backup...')
os.makedirs(os.path.join(cfg.cwd, cfg.out_path), exist_ok=True)
train_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'train.pkl')
valid_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'valid.pkl')
test_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'test.pkl')
save_pkl(train_data, train_save_fp)
save_pkl(valid_data, valid_save_fp)
save_pkl(test_data, test_save_fp)
if cfg.model_name != 'lm':
vocab_save_fp = os.path.join(cfg.cwd, cfg.out_path, 'vocab.pkl')
vocab_txt = os.path.join(cfg.cwd, cfg.out_path, 'vocab.txt')
save_pkl(vocab, vocab_save_fp)
logger.info('save vocab in txt file, for watching...')
with open(vocab_txt, 'w', encoding='utf-8') as f:
f.write(os.linesep.join(vocab.word2idx.keys()))
logger.info('===== end preprocess data =====')